Academia is not producing sufficient PhDs in the plant sciences to solve the crop production challenges facing a rapidly growing population.
FLICKR, JOI ITOWhile the message is not new, the declaration of the flaws of the US biomedical research system by four prominent life scientists this spring captured everyone’s attention. Bruce Alberts, Marc Kirschner, Shirley Tilghman, and Harold Varmus wrote in PNAS of how “demands for research dollars grew much faster than the supply . . . [due to] perverse incentives [that] encourage grantee institutions to grow without making sufficient investments in their faculty and facilities.” Rather than devote money to faculty salaries, universities built infrastructure to house more self-paid researchers able to bring in more money via research grants, of which a large fraction was used as revenue (overhead) for the university. More labs required more students to fill them, leading to a dramatic rise of PhDs in the biomedical sciences, which then produced more researchers competing for dwindling grant dollars. In short, research institutions have no incentive to support individual faculty and instead have perverse incentives to encourage further research spending: more grants = more overhead = more buildings = more PIs = more PhDs in an increasingly out-of-control spiral. (See “PhDs in the U.S.”) This is not sustainable, and we are now experiencing the consequences, with the most despairing being the lack of adequate jobs for our postdocs and perceived insufficient funding for all of us.
PhDs in the U.S.: From 1982 to 2012, the total number of PhDs in the life sciences (blue) has grown dramatically. Most of these PhDs are in biological, biomedical, and health sciences (red), however; the number of PhDs in the agricultural and natural sciences (green) has remained flat over that same time period. The unsustainable rate of PhDs awarded per year in the biomedical sciences does not extrapolate to the rate of PhDs in other life sciences, however, especially the agricultural sciences, where the rate of PhDs per year has remained flat for decades. Since 1982, we have consistently trained only about 1,000 PhDs in applied agricultural and related sciences each year. And over the last decade, the U.S. has annually produced only 800 or so plant scientists working in applied agricultural science and only 100 with the skills for basic plant research. (See “Plant science stagnates.”) Given the global agricultural challenges we now face, this is a problem.
Plant science stagnates: Selected subdisciplines relevant to a work force in plant industry (blue and green) have not increased this century, while selected biomedical subdisciplines (red) have grown steeply.Biomedical subdisciplines include bioinformatics, biomedical sciences, biometrics and biostatistics, cancer biology, computational biology, developmental biology/embryology, neurosciences and neurobiology, structural biology, virology. Basic plant biology subdisciplines (green) include botany/plant biology, plant genetics, plant pathology/phytopathology, plant physiology. Agricultural research subdisciplines (blue) include agricultural and horticultural plant breeding, agricultural economics, agronomy and crop science, forest engineering, forest sciences and biology, forestry and related science, horticulture science, plant pathology/phytopathology (applied), plant sciences (other), soil chemistry/microbiology, soil sciences, entomology, plant genetics, plant pathology/phytopathology applied plant physiology. The growing world population needs to eat, and it is past due that we elevate basic, translational, and applied plant research to the priority given to biomedical research, or more boldly, to defense. Stabilizing food supplies in a changing environment is integral not only to the world population’s health, as an estimated 50 percent of childhood disease globally is attributed to malnourishment, but also to national security. Moreover, a recent study found that, around the world, the rate of return for investment in agricultural research is ten to one, bringing into question the scaling back of funding for agriculture research and development in many rich countries.








